Khoa học đại chúng hiện đại và văn học đại chúng thường sử dụng các thuật ngữ "sức mạnh tổng hợp", "lý thuyết hỗn loạn" và "điểm phân đôi". Xu hướng dân túy sử dụng lý thuyết hệ thống phức tạp mới này thường thay thế ý nghĩa khái niệm và ngữ cảnh của các định nghĩa. Chúng ta hãy cố gắng không trừu tượng, nhưng vẫn gần gũi với khoa học, để giải thích cho người đọc quan tâm về ý nghĩa và bản chất của những khái niệm này.
Hệ thống khoa học và tự tổ chức
Một học thuyết liên ngành khám phá các mô hình trong các hệ thống phức tạp của bất kỳ bản chất nào là hợp lực. Điểm phân nhánh như một bước ngoặt hoặc thời điểm lựa chọn là một khái niệm quan trọng trong lý thuyết về hành vi của các hệ thống phức tạp. Khái niệm tổng hợp của các hệ thống phức tạp ngụ ý tính mở của chúng (trao đổi vật chất, năng lượng, thông tin với môi trường), tính phi tuyến tính của sự phát triển (sự hiện diện của nhiều con đường phát triển), tính tiêu tán (xả dư thừa entropi) vàkhả năng xảy ra trạng thái phân đôi (lựa chọn hoặc điểm khủng hoảng). Lý thuyết hợp lực có thể áp dụng cho tất cả các hệ thống có một chuỗi và những thay đổi co thắt phát triển theo thời gian - sinh học, xã hội, kinh tế, vật lý.
Buridan's Donkey
Một kỹ thuật phổ biến là giải thích những điều phức tạp bằng các ví dụ đơn giản. Một minh họa cổ điển mô tả trạng thái của một hệ thống đang tiếp cận điểm phân đôi là ví dụ của nhà logic học nổi tiếng thế kỷ 14 Jean Buridan với một con lừa, chủ nhân của ông ta và một triết gia. Đây là những nhiệm vụ bắt đầu. Có một chủ đề được lựa chọn - hai nắm cỏ khô. Có một hệ thống mở - một con lừa, nằm ở cùng một khoảng cách từ cả hai đống cỏ khô. Những người quan sát là bậc thầy của con lừa và nhà triết học. Câu hỏi đặt ra là con lừa sẽ chọn nắm cỏ khô nào? Trong câu chuyện ngụ ngôn của Buridan, trong ba ngày, mọi người đã theo dõi con lừa, con lừa không thể đưa ra lựa chọn cho đến khi người chủ kết nối các đống. Và không ai chết đói.
Khái niệm phân đôi diễn giải tình huống như sau. Chúng ta lược bỏ phần cuối của dụ ngôn và tập trung vào tình huống lựa chọn giữa các vật thể cân bằng. Tại thời điểm này, bất kỳ sự thay đổi nào cũng có thể dẫn đến sự thay đổi tình huống đối với một trong các đối tượng (ví dụ, một con lừa ngủ gật, thức dậy và ở gần một trong những đống cỏ khô hơn). Trong hiệp lực, con lừa là một hệ thống mở phức tạp. Điểm phân giác là trạng thái của con lừa trước sự lựa chọn cân bằng. Sự thay đổi vị trí là một sự xáo trộn (dao động) của hệ thống. Và hai đống cỏ khô là chất thu hút, trạng thái mà hệ thống sẽ đến sau khi đi qua điểm phân nhánh và đạt đến trạng thái cân bằng mới.
Ba điểm phân chia cơ bản
Trạng thái của hệ thống tiếp cận điểm phân đôi được đặc trưng bởi ba thành phần cơ bản: đứt gãy, sự lựa chọn và thứ tự. Trước điểm phân đôi, hệ thống đang ở trong một chất hấp dẫn (một tính chất đặc trưng cho sự ổn định của hệ thống). Tại điểm phân đôi, hệ thống được đặc trưng bởi sự dao động (nhiễu loạn, dao động của các chỉ số), gây ra sự thay đổi đột ngột về chất và định lượng trong hệ thống với sự lựa chọn của chất dẫn dụ mới hoặc chuyển sang trạng thái ổn định mới. Sự đa dạng của các yếu tố thu hút có thể có và vai trò to lớn của tính ngẫu nhiên cho thấy tính đa biến của tổ chức hệ thống.
Toán học mô tả các điểm phân giác và các giai đoạn di chuyển của nó bằng hệ thống trong các phương trình vi phân phức tạp với vô số tất cả các tham số và dao động.
Điểm phân thân bất định
Đây là trạng thái của hệ thống trước sự lựa chọn, ở ngã tư, tại điểm phân kỳ của các phương án trắc nghiệm và phát triển. Trong khoảng thời gian giữa các lần phân đôi, hành vi tuyến tính của hệ thống có thể dự đoán được, nó được xác định bởi cả yếu tố ngẫu nhiên và thường xuyên. Nhưng tại điểm phân chia, vai trò của cơ hội được đặt lên hàng đầu, và sự biến động không đáng kể ở “đầu vào” trở nên lớn ở “đầu ra”. Tại các điểm phân đôi, hoạt động của hệ thống là không thể đoán trước và bất kỳ cơ hội nào cũng sẽ chuyển nó sang một chất hấp dẫn mới. Nó giống như một nước đi trong một trò chơi cờ vua - sau nó, có nhiều lựa chọn để phát triển các sự kiện.
Nếu bạn đi bên phải, bạn sẽ bị mất ngựa …
Ngã tư trong truyện cổ tích Nga là một hình ảnh rất sống động với sự lựa chọn và sự không chắc chắn về trạng thái tiếp theo của hệ thống. Khi tiếp cận điểm phân nhánh, hệ thống dường như dao động, và dao động nhỏ nhất có thể dẫn đến một tổ chức hoàn toàn mới, trật tự thông qua dao động. Và vào thời điểm mang tính bước ngoặt này, không thể đoán trước được sự lựa chọn của hệ thống. Đây là cách, trong sự hiệp lực, những nguyên nhân hoàn toàn nhỏ sẽ dẫn đến hậu quả to lớn, mở ra một thế giới phát triển không ổn định của tất cả các hệ thống - từ Vũ trụ đến sự lựa chọn của con lừa Buridan.
Hiệu ứng cánh bướm
Hệ thống đi đến trật tự thông qua sự biến động, sự hình thành của một thế giới không ổn định phụ thuộc vào những thay đổi ngẫu nhiên nhỏ nhất, được phản ánh bằng phép ẩn dụ hiệu ứng cánh bướm. Nhà khí tượng học, toán học và hiệp lực học Edward Lorentz (1917-2008) đã mô tả độ nhạy của một hệ thống đối với sự thay đổi nhỏ nhất. Ý tưởng của anh ấy là một cú đánh của cánh bướm ở Iowa có thể tạo ra một trận tuyết lở của nhiều quá trình khác nhau sẽ kết thúc vào mùa mưa ở Indonesia. Một hình ảnh sống động ngay lập tức được các nhà văn chọn ra, những người đã viết nhiều cuốn tiểu thuyết về chủ đề sự đa dạng của các sự kiện. Việc phổ cập kiến thức trong lĩnh vực này phần lớn là nhờ công của đạo diễn Hollywood Eric Bress với bộ phim đạt doanh thu phòng vé The Butterfly Effect.
Phân nhánh và thảm họa
Phân đôi có thể mềm hoặc cứng. Một đặc điểm của phân nhánh mềm là sự khác biệt nhỏ trong hệ thống sau khi đi qua điểm phân nhánh. Khi chất hấp dẫn cósự khác biệt đáng kể về sự tồn tại của hệ thống, sau đó họ nói rằng điểm phân đôi này là một thảm họa. Khái niệm này lần đầu tiên được đưa ra bởi nhà khoa học người Pháp René Federic Thom (1923-2002). Ông cũng là tác giả của lý thuyết về thảm họa, như sự phân đôi của các hệ thống. Bảy thảm họa nguyên tố của ông có những cái tên rất thú vị: nếp gấp, nếp gấp, đuôi chim én, con bướm, rốn hyperbol, hình elip và parabol.
Ứng dụng tổng hợp
Lý thuyết hợp lực và lý thuyết phân đôi không xa với cuộc sống hàng ngày như người ta vẫn tưởng. Trong cuộc sống hàng ngày, một người vượt qua điểm phân giác hàng trăm lần trong ngày. Con lắc do chúng ta lựa chọn - có ý thức hoặc dường như chỉ có ý thức - dao động liên tục. Và có thể hiểu được các quy trình của tổ chức hợp lực của thế giới sẽ giúp chúng ta đưa ra lựa chọn sáng suốt hơn, tránh được những thảm họa, nhưng sẽ làm được với những phân nhánh nhỏ.
Ngày nay, tất cả kiến thức của chúng ta về khoa học cơ bản đã đạt đến điểm phân chia. Việc phát hiện ra vật chất tối và khả năng bảo tồn nó đã đưa nhân loại đến một thời điểm mà một sự thay đổi hoặc khám phá ngẫu nhiên có thể đưa chúng ta đến một trạng thái khó đoán định. Các cuộc thám hiểm và khám phá vũ trụ hiện đại, lý thuyết lỗ thỏ và ống không-thời gian mở rộng khả năng tri thức đến những giới hạn không thể tưởng tượng được. Người ta vẫn chỉ tin rằng, khi đã đến gần điểm phân đôi tiếp theo, một biến động ngẫu nhiên sẽ không đẩy nhân loại xuống vực thẳm của sự không tồn tại.